Jix' Site

# algorithms

## Encoding Matrix Rank for SAT Solvers

I’m working on a problem where I want to use a SAT solver to check that a property $P(v_1, \ldots, v_n)$ holds for a bunch of vectors $v_1, \ldots, v_n$, but I don’t care about the basis choice. In other words I want to check whether an arbitrary invertible linear transform $T$ exists so that the transformed vectors have a certain property, i.e. $P(T(v_1), \ldots, T(v_n))$. I solved this by finding an encoding for constraining the rank of a matrix. With that I can simply encode $P(M v_1, \ldots, M v_2)$ where $M$ is a square matrix constrained to have full rank and which therefore is invertible.

## Varisat 0.1.3: LRAT Generation and Proof Trimming

I’ve released a new version of my SAT solver Varisat. It is now split across two crates: one for library usage and one for command line usage.

The major new features in this release concern the genration of unsatisfiability proofs. Varisat is now able to directly generate proofs in the LRAT format in addition to the DRAT format. The binary versions of both formats are supported too. Varisat is also able to do on the fly proof trimming now. This is similar to running DRAT-trim but processes the proof while the solver runs.

## Introducing Varisat

I’ve been interested in SAT solvers for quite some time. These are programs that take a boolean formula and either find a variable assignment that makes the formula true or find a proof that this is impossible. As many difficult problems can be rephrased as the satisfiability of a suitable boolean formula, SAT solvers are incredibly versatile und useful. I’ve recently finished and now released a first version of my SAT solver, Varisat, on crates.io.

## Not Even Coppersmith's Attack

Earlier this year, in October, a new widespread cryptography vulnerability was announced. The initial announcement didn’t contain details about the vulnerability or much details on how to attack it (updated by now). It did state the affected systems though: RSA keys generated using smartcards and similar devices that use Infineon’s RSALib. The announcement came with obfuscated code that would check whether a public key is affected. Also, the name chosen by the researchers was a small hint on how to attack it: “Return of Coppersmith’s Attack”.

I decided to try and figure out the details before the conference paper describing them would be released. By the time the paper was released, I had reverse engineered the vulnerability and implemented my own attack, which did not use Coppersmith’s method at all. This post explains how I figured out what’s wrong with the affected RSA-keys and how I used that information to factor affected 512-bit RSA-keys.

## Pushing Polygons on the Mega Drive

This is a write-up of the polygon renderer used for the Mega Drive demo “Overdrive 2” by Titan, released at the Revision 2017 Demoparty. As the Mega Drive can only display tilemaps, not bitmaps, and does not have the video memory mapped into the CPU address space, this turned out to be an interesting problem. If you have not seen the demo yet, I recommend watching it before continuing. You can find a hardware capture on YouTube: